Press "Enter" to skip to content

Applying Quality Assurance Practices to Data Science

Devin Partida bridges the gap:

The world runs on data. Data scientists organize and make sense of a barrage of information, synthesizing and translating it so people can understand it. They drive the innovation and decision-making process for many organizations. But the quality of the data they use can greatly influence the accuracy of their findings, which directly impacts business outcomes and operations. That’s why data scientists must follow strong quality assurance practices.

Read on for seven practices which can help data scientists achieve better outcomes.