Santosh Thomas integrates two Azure products:
As more customers standardize on the Synapse data platform, enabling machine learning workflows through Azure Machine Learning (Azure ML) becomes particularly interesting. This is especially true as more customers look to bring their data engineering and data science practices together and mature capabilities on both sides.
The goal of this blog post is to highlight how Synapse and Azure ML can work well together to deliver key insights. This is motivated by a scenario where a customer modernized their data platform on Azure Synapse but was looking to improve their data science practices through Azure ML. The focus of this blog is to expose existing functionality, and it is not a “hardened” solution with security or other cloud best practice implementations. The workflow steps also assume some level of comfort with Python and working with the Azure Python SDKs.
There was a time in which Microsoft wanted us to remain in Synapse for machine learning tasks, but that time is gone: the emphasis is definitely to do machine learning tasks in Azure ML, regardless of where the data lives…unless there’s a Spark job involved, in which case things get all weird again.