Press "Enter" to skip to content

Comparing Data Analysis in Java and Python

Manu Barriola does some data analysis in a pair of quite different languages:

Python is a dynamically typed language, very straightforward to work with, and is certainly the language of choice to do complex computations if we don’t have to worry about intricate program flows. It provides excellent libraries (Pandas, NumPy, Matplotlib, ScyPy, PyTorch, TensorFlow, etc.) to support logical, mathematical, and scientific operations on data structures or arrays.

Java is a very robust language, strongly typed, and therefore has more stringent syntactic rules that make it less prone to programmatic errors. Like Python provides plenty of libraries to work with data structures, linear algebra, machine learning, and data processing (ND4J, Mahout, Spark, Deeplearning4J, etc.).

In this article, we’re going to focus on a narrow study of how to do simple data analysis of large amounts of tabular data and compute some statistics using Java and Python. We’ll see different techniques on how to do the data analysis on each platform, compare how they scale, and the possibilities to apply parallel computing to improve their performance.

Read on to see how the two compare. Note that this is base Java and Python+Pandas, not Spark/PySpark, Koalas, etc.

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.