Press "Enter" to skip to content

Streaming Foreign Key Joins in Kafka Streams

John Roesler and Adam Bellemare take us in depth on a feature:

Before 2.4.0, the absence of foreign-key joins in Kafka Streams was palpable. As soon as you have a KTable abstraction, you start to think of relational-DB-esque things that you’d like to do with it, and joining two tables is near the top of the list. In addition, Kafka users often started out by implementing change data capture (CDC) of their main database tables, resulting in the production of normalized record streams reflecting the database model. These records often contain foreign-key references, requiring you to either denormalize entirely within your source database (which can be quite expensive), or handle them downstream in your consumer. The ability to compute denormalization on the fly is exactly in the sweet spot of use cases for Kafka Streams.

In versions prior to 2.4, there were workarounds available to compute a foreign-key join, using the ability to transform the table, filter it, aggregate on properties, and join on primary keys. But these workarounds were complex, prone to bugs, and not very efficient. A concrete plan to implement first-class support for this crucial operation was first put together when Jan Filipiak proposed KIP-213 in 2017. Adam Bellemare took over driving the proposal in 2018 and brought it to a conclusion in time for the 2.4.0 release.

Click through for examples of how it all works, as well as how you might optimize foreign key joins.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.