Nowadays Delta lake is a buzz word in the Big Data world, especially among the spark developers because it relegates lots of issues found in the Big Data domain. Delta Lake is an open-source storage layer that brings reliability to data lakes. Delta Lake provides ACID transactions, scalable metadata handling, and unifies streaming and batch data processing. It is evolving day by day and adds cool features in its every release. On 19th June 2020, Delta lake version 0.7.0 was released and this is the first release on Spark 3.x. This release involves important key features that can make the spark developer’s work easy.
One of the interesting key features in this release is the support for metastore-defined tables and SQL DDLs. So now we can define Delta tables in the Hive metastore and use the table name in all SQL operations. We can perform SQL DDLs to create tables, insert into tables, explicitly alter the schema of the tables, and so on. So in this blog, we will learn how we can perform SQL DDLs/DMLS/DQL in Delta Lake 0.7.0.
Click through for the examples.