Press "Enter" to skip to content

Machine Learning through Counterfactuals

Amit Sharma announces a new library:

Consider a person who applies for a loan with a financial company, but their application is rejected by a machine learning algorithm used to determine who receives a loan from the company. How would you explain the decision made by the algorithm to this person? One option is to provide them with a list of features that contributed to the algorithm’s decision, such as income and credit score. Many of the current explanation methods provide this information by either analyzing the algorithm’s properties or approximating it with a simpler, interpretable model.

However, these explanations do not help this person decide what to do next to increase their chances of getting the loan in the future. In particular, changing the most important features for prediction may not actually change the decision, and in some cases, important features may be impossible to change, such as age. A similar argument applies when algorithms are used to support decision-makers in scenarios such as screening job applicants, deciding health insurance, or disbursing government aid.

This has the potential to be a great library. One of the issues with machine learning as it stands today is that you can get an answer, but to understand how to change the answer requires having a human understand the model. This looks like a good first step. It’s only available in Python.