Press "Enter" to skip to content

Fraud Detection with Flink

Alexander Fedulov gives us a case study of using Apache Flink for fraud detection:

In this blog post, we have discussed the motivation behind supporting dynamic, runtime changes to a Flink application by looking at a sample use case – a Fraud Detection engine. We have described the overall architecture and interactions between its components as well as provided references for building and running a demo Fraud Detection application in a dockerized setup. We then showed the details of implementing a dynamic data partitioning pattern as the first underlying building block to enable flexible runtime configurations.

To remain focused on describing the core mechanics of the pattern, we kept the complexity of the DSL and the underlying rules engine to a minimum. Going forward, it is easy to imagine adding extensions such as allowing more sophisticated rule definitions, including filtering of certain events, logical rules chaining, and other more advanced functionality.

It was an interesting discussion and you can grab the code as well.