Beth Ebersole takes us through creating training, validation, and test data sets using SAS Viya:
Training data are used to fit each model. Training a model involves using an algorithm to determine model parameters (e.g., weights) or other logic to map inputs (independent variables) to a target (dependent variable). Model fitting can also include input variable (feature) selection. Models are trained by minimizing an error function.
For illustration purposes, let’s say we have a very simple ordinary least squares regression model with one input (independent variable, x) and one output (dependent variable, y). Perhaps our input variable is how many hours of training a dog or cat has received, and the output variable is the combined total of how many fingers or limbs we will lose in a single encounter with the animal.
Read on for some good notes, including the difference between mean squared error and average squared error.