Performance Tuning Neural Network Training

Sean Owen takes us through a few techniques for speeding up neural network model training:

Step #2: Use Early Stopping
Keras (and other frameworks) have built-in support for stopping when further training appears to be making the model worse. In Keras, it’s the EarlyStopping callback. Using it means passing the validation data to the training process for evaluation on every epoch. Training will stop after several epochs have passed with no improvement. restore_best_weights=True ensures that the final model’s weights are from its best epoch, not just the last one. This should be your default.

Sean focuses here on Keras + TensorFlow on Spark, but several of the tips are cross-product and generally applicable.

Related Posts

Calculating YARN Utilization Metrics

Dmitry Tolpeko shows how you can calculate per-second cluster utilization measures from YARN’s resource manager logs: But even if you query YARN REST API every second it still can only provide a snapshot of the used YARN resources. It does not show which application allocates or releases containers, their memory and CPU capacity, in which […]

Read More

Spark Streaming DStreams

Manish Mishra explains the fundamental abstraction of Spark Streaming: Before going into details of the operations available on the DStream API, let us look at the input sources from which we can start a Stream. There are multiple ways in which we can get the inputs from e.g. Kafka, Flume, etc. Or simple Idle files. […]

Read More

Categories

August 2019
MTWTFSS
« Jul Sep »
 1234
567891011
12131415161718
19202122232425
262728293031