Sentiment Analysis with Python

Bruno Stecanella shows us how to use MonkeyLearn to perform sentiment analysis in Python:

Sentiment analysis is a set of Natural Language Processing (NLP) techniques that takes a text (in more academic circles, a document) written in natural language and extracts the opinions present in the text.

In a more practical sense, our objective here is to take a text and produce a label (or labels) that summarizes the sentiment of this text, e.g. positiveneutral, and negative.

For example, if we were dealing with hotel reviews, we would want the sentence ‘The staff were lovely‘ to be labeled as Positive, and the sentence ‘The shared bathroom was absolutely disgusting‘ labeled as Negative.

Click through for a demo.

Related Posts

Key Concepts of Convolutional Neural Networks

Srinija Sirobhushanam takes us through some of the key concepts around convolutional neural networks: How are convolution layer operations useful?CNN helps us look for specific localized image features like the edges in the image that we can use later in the network Initial layers to detect simple patterns, such as horizontal and vertical edges in […]

Read More

LSTM in Databricks

Vedant Jain shows us an example of solving a multivariate time series forecasting problem using LSTM networks: LSTM is a type of Recurrent Neural Network (RNN) that allows the network to retain long-term dependencies at a given time from many timesteps before. RNNs were designed to that effect using a simple feedback approach for neurons where the […]

Read More


May 2019
« Apr Jun »