Flink: Batch as a Special Case of Streaming

Fabian Hueske and Aljoscha Krettek describe streaming versus batch processing in Apache Flink:

The Apache Flink project has followed the philosophy of taking a unified approach to batch and stream data processing, building on the core paradigm of “continuous processing of unbounded data streams” for a long time. If you think about it, carrying out offline processing of bounded data sets naturally fits the paradigm: these are just streams of recorded data that happen to end at some point in time.

Flink is not alone in this: there are other projects in the open source community that embrace “streaming first, with batch as a special case of streaming,” such as Apache Beam; and this philosophy has often been cited as a powerful way to greatly reduce the complexity of data infrastructures by building data applications that generalize across real-time and offline processing.

Check it out. At the end, the authors also describe Blink, a fork of Flink being (slowly) merged back in and which supports this paradigm.

Related Posts

Hooking SQL Server to Kafka

Niels Berglund has an interesting scenario for us: We see how the procedure in Code Snippet 2 takes relevant gameplay details and inserts them into the dbo.tb_GamePlay table. In our scenario, we want to stream the individual gameplay events, but we cannot alter the services which generate the gameplay. We instead decide to generate the event from the database […]

Read More

Notebooks in Azure Databricks

Brad Llewellyn takes us through Azure Databricks notebooks: Azure Databricks Notebooks support four programming languages, Python, Scala, SQL and R.  However, selecting a language in this drop-down doesn’t limit us to only using that language.  Instead, it makes the default language of the notebook.  Every code block in the notebook is run independently and we […]

Read More

Categories

April 2019
MTWTFSS
« Mar May »
1234567
891011121314
15161718192021
22232425262728
2930