Naive Bays in R

Zulaikha Lateef takes us through the Naive Bayes algorithm and implementations in R:

Naive Bayes is a Supervised Machine Learning algorithm based on the Bayes Theorem that is used to solve classification problems by following a probabilistic approach. It is based on the idea that the predictor variables in a Machine Learning model are independent of each other. Meaning that the outcome of a model depends on a set of independent variables that have nothing to do with each other. 

Naive Bayes is one of the simplest algorithms available and yet it works pretty well most of the time. It’s almost never the best solution but it’s typically good enough to give you an idea of whether you can get a job done.

Related Posts

WVPlots

Nina Zumel announces a new version of WVPlots on CRAN: WVPlots was originally a catch-all package of ggplot2 visualizations that we at Win-Vector tended to use repeatedly, and wanted to turn into “one-liners.” A consequence of this is that the older visualizations had our preferred color schemes hard-coded in. More recent additions to the package sometimes had palette […]

Read More

Icon Maps in R

Laura Ellis shows how you can build maps full of little icons: That was ok, but we should try to make the images more aesthetically pleasing using the magick package. We make each image transparent with the image_transparent() function. We can also make the resulting image a specific color with image_colorize(). I then saved the […]

Read More

Categories

April 2019
MTWTFSS
« Mar May »
1234567
891011121314
15161718192021
22232425262728
2930