The major problem of the Lambda architecture is that we have to build two separate pipelines, which can be very complex, and, ultimately, difficult to combine the processing of batch and real-time data, however, it is now possible to overcome such limitation if we have the possibility to change our approach.
Databricks Delta delivers a powerful transactional storage layer by harnessing the power of Apache Spark and Databricks File System (DBFS). It is a single data management tool that combines the scale of a data lake, the reliability and performance of a data warehouse, and the low latency of streaming in a single system. The core abstraction of Databricks Delta is an optimized Spark table that stores data as parquet files in DBFS and maintains a transaction log that tracks changes to the table.
It’s an interesting contrast and I recommend reading the whole thing.