Using Datadog To Monitor Spark Clusters On EMR

Priya Matpadi walks us through one way to monitor Spark clusters on Amazon ElasticMapReduce:

We recently implemented a Spark streaming application, which consumes data from from multiple Kafka topics. The data consumed from Kafka comprises different types of telemetry events generated by mobile devices. We decided to host the Spark cluster using the Amazon EMR service, which manages a fleet of EC2 instances to run our data-processing pipelines.

As part of preparing the cluster and application for deployment to production, we needed to implement monitoring so we could track the streaming application and the Spark infrastructure itself. At a high level, we wanted ensure that we could monitor the different components of the application, understand performance parameters, and get alerted when things go wrong.

In this post, we’ll walk through how we aggregated relevant metrics in Datadog from our Spark streaming application running on a YARN cluster in EMR.

Check it out.  If this is interesting, Priya’s blog has the full series.

Related Posts

Processing Fixed-Width Files with Spark

Subhasish Guha shows how you can read a fixed-with file with Apache Spark: A fixed width file is a very common flat file format when working with SAP, Mainframe, and Web Logs. Converting the data into a dataframe using metadata is always a challenge for Spark Developers. This particular article talks about all kinds of […]

Read More

Sentiment Analysis with Spark on Qubole

Jonathan Day, et al, have a tutorial on using Qubole to build a sentiment analysis model: This post covers the use of Qubole, Zeppelin, PySpark, and H2O PySparkling to develop a sentiment analysis model capable of providing real-time alerts on customer product reviews. In particular, this model allows users to monitor any natural language text […]

Read More

Categories

November 2018
MTWTFSS
« Oct Dec »
 1234
567891011
12131415161718
19202122232425
2627282930