Pivoting With Spark SQL

MaryAnn Xue shows us how to use the PIVOT operator in Spark SQL:

Pivot was first introduced in Apache Spark 1.6 as a new DataFrame feature that allows users to rotate a table-valued expression by turning the unique values from one column into individual columns.

The upcoming Apache Spark 2.4 release extends this powerful functionality of pivoting data to our SQL users as well. In this blog, using temperatures recordings in Seattle, we’ll show how we can use this common SQL Pivot feature to achieve complex data transformations.

The syntax is quite similar to the PIVOT syntax that SQL Server uses.

Related Posts

Game Theory With Apache Spark

Konor Unyelioglu has a four-part series on solving game theoretical problems with Apache Spark.  Part one lays out the scenario: One application of game theory is finding optimal resource allocation. For example, as discussed in this article, resource management for heterogeneous wireless networks involves sharing network links, e.g. 3G, Wi-Fi, WiMAX, LTE, between mobile devices of […]

Read More

Quick Spark Notes

Leela Prasad has a few quick notes on concepts in Apache Spark: Broadcast Variables Broadcast variables allow the programmer to keep a read-only variable cached on each machine rather than shipping a copy of it with tasks. They can be used, for example, to give every node a copy of a large input dataset in […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

November 2018
MTWTFSS
« Oct  
 1234
567891011
12131415161718
19202122232425
2627282930