In Lieu Of Lambda Architecture, Using Faster Databases

Justin Langseth argues that the Lambda architecture is not really necessary if you are using the right data stores:

Basically, the idea is to keep the fast stuff fast and the slow stuff slow. I wrote a paper 14 years ago on the challenges of real-time data warehousing. Fortunately, both the data streaming, database, and BI layers have all evolved significantly since then, and now there exist databases and other data storage engines which can support the feature trinity that is needed to do both real-time and historical analytics right, without a Lambda architecture:

  1. Accept real-time streams of data at high rates.
  2. Simultaneously respond to large volumes of queries, including on the most recently added data.
  3. Store all the history needed for analysis.

We call these engines “fast data sinks” and there are four main groups of them today:

It’s an interesting argument.

Related Posts

Machine Learning and Delta Lake

Brenner Heintz and Denny Lee walk us through solving data engineering problems with Delta Lake: As a result, companies tend to have a lot of raw, unstructured data that they’ve collected from various sources sitting stagnant in data lakes. Without a way to reliably combine historical data with real-time streaming data, and add structure to […]

Read More

Cloudera Stream Processing

Dinesh Chandrasekhar announces the new iteration of Cloudera’s streaming data processor: Cloudera Stream Processing (CSP) is a product within the Cloudera DataFlow platform that packs Kafka along with some key streaming components that empower enterprises to handle some of the most complex and sophisticated streaming use cases. CSP provides advanced messaging, real-time processing and analytics on […]

Read More

Categories

October 2018
MTWTFSS
« Sep Nov »
1234567
891011121314
15161718192021
22232425262728
293031