Mark Litwintschik reviews several clients for working with the Hadoop Distributed Filesystem:
The Hadoop Distributed File System (HDFS) allows you to both federate storage across many computers as well as distribute files in a redundant manor across a cluster. HDFS is a key component to many storage clusters that possess more than a petabyte of capacity.
Each computer acting as a storage node in a cluster can contain one or more storage devices. This can allow several mechanical storage drives to both store data more reliably than SSDs, keep the cost per gigabyte down as well as go some way to exhausting the SATA bus capacity of a given system.
Hadoop ships with a feature-rich and robust JVM-based HDFS client. For many that interact with HDFS directly it is the go-to tool for any given task. That said, there is a growing population of alternative HDFS clients. Some optimise for responsiveness while others make it easier to utilise HDFS in Python applications. In this post I’ll walk through a few of these offerings.
Read on for reviews of those offerings.