Visualizing In R: 3 Packages

Kristian Larsen has a quick demo of three R visualization packages, ggplot2, dygraphs, and plotly:

Another value generating visualisation package in R is dygraphs. This package focuses on creating interactive visualisations with elegant interactive coding modules. Furthermore, the package specialises in creating visualisations for machine learning methods. The below coding generates different visualisation graphs with dygraphs:

Three useful libraries to learn.  Two more which might be useful are ggvis and rbokeh.

Related Posts

From Excel to R: Three Examples

Abdul Majed Raja has a few examples of things which are easy to do in Excel and how you can do them in R: Create a difference variable between the current value and the next valueThis is also known as lead and lag – especially in a time series dataset this varaible becomes very important in feature engineering. In […]

Read More

Calculating AUC in R

Andrew Treadway shows how you can calculate Area Under the Curve in R: AUC is an important metric in machine learning for classification. It is often used as a measure of a model’s performance. In effect, AUC is a measure between 0 and 1 of a model’s performance that rank-orders predictions from a model. For […]

Read More


October 2018
« Sep Nov »