Visualizing In R: 3 Packages

Kristian Larsen has a quick demo of three R visualization packages, ggplot2, dygraphs, and plotly:

Another value generating visualisation package in R is dygraphs. This package focuses on creating interactive visualisations with elegant interactive coding modules. Furthermore, the package specialises in creating visualisations for machine learning methods. The below coding generates different visualisation graphs with dygraphs:

Three useful libraries to learn.  Two more which might be useful are ggvis and rbokeh.

Related Posts

Dependencies as Risks

John Mount makes the point that packages dependencies are innately a risk: If your software or research depends on many complex and changing packages, you have no way to establish your work is correct. This is because to establish the correctness of your work, you would need to also establish the correctness of all of […]

Read More

Custom ggplot2 Fonts

Daniel Oehm shares two techniques for using custom fonts in your ggplot2 visuals: ggplot – You can spot one from a mile away, which is great! And when you do it’s a silent fist bump. But sometimes you want more than the standard theme. Fonts can breathe new life into your plots, helping to match […]

Read More


October 2018
« Sep Nov »