Values Belong In Columns

Kevin Feasel

2018-09-04

R

John Mount argues that to reduce ambiguity, ensure that your values are columns on appropriate data frames:

Here is an (artificial) example.

chamber_sizes <- mtcars$disp/mtcars$cyl
form <- hp ~ chamber_sizes
model <- lm(form, data = mtcars)
print(model)
# Call:
# lm(formula = form, data = mtcars)
#
# Coefficients:
# (Intercept) chamber_sizes
# 2.937 4.104 

Notice: one of the variables came from a vector in the environment, not from the primary data.framechamber_sizes was first looked for in the data.frame, and then in the environment the formula was defined (which happens to be the global environment), and (if that hadn’t worked) in the executing environment (which is again the global environment).

Our advice is: do not do that. Place all of your values in columns. Make it unambiguous all variables are names of columns in your data.frame of interest. This allows you to write simple code that works over explicit data. The style we recommend looks like the following.

Read the whole thing.

Related Posts

Interactive ggplot Plots with plotly

Laura Ellis takes us through ggplotly: As someone very interested in storytelling, ggplot2 is easily my data visualization tool of choice. It is like the Swiss army knife for data visualization. One of my favorite features is the ability to pack a graph chock-full of dimensions. This ability is incredibly handy during the data exploration […]

Read More

Goodbye, gather and spread; Hello pivot_long and pivot_wide

John Mount covers a change in tidyr which mimics Mount and Nina Zumel’s pivot_to_rowrecs and unpivot_to_blocks functions in the cdata package: If you want to work in the above way we suggest giving our cdatapackage a try. We named the functions pivot_to_rowrecs and unpivot_to_blocks. The idea was: by emphasizing the record structure one might eventually internalize what the transforms […]

Read More

Categories

September 2018
MTWTFSS
« Aug Oct »
 12
3456789
10111213141516
17181920212223
24252627282930