Databricks Delta: Data Skipping And ZORDER Clustering

Adrian Ionescu explains a couple of concepts which can help make selective queries with Databricks much faster:

The general use-case for these features is to improve the performance of needle-in-the-haystack kind of queries against huge data sets. The typical RDBMS solution, namely secondary indexes, is not practical in a big data context due to scalability reasons.

If you’re familiar with big data systems (be it Apache Spark, Hive, Impala, Vertica, etc.), you might already be thinking: (horizontal) partitioning.

Quick reminder: In Spark, just like Hive, partitioning works by having one subdirectory for every distinct value of the partition column(s). Queries with filters on the partition column(s) can then benefit from partition pruning, i.e., avoid scanning any partition that doesn’t satisfy those filters.

The main question is: What columns do you partition by?
And the typical answer is: The ones you’re most likely to filter by in time-sensitive queries.
But… What if there are multiple (say 4+), equally relevant columns?

Read the whole thing.

Related Posts

Working With Skewed Data In Pig

Dmitry Tolpeko explains how you can use the Weighted Range Partitioner in Apache Pig to work with highly skewed data: The problem is that there are 3,000 map tasks are launched to read the daily data and there are 250 distinct event types, so the mappers will produce 3,000 * 250 = 750,000 files per day. That’s […]

Read More

Spark Streaming Using DStreams Or DataFrames?

Yaroslav Tkachenko contrasts the two methods for operating on data with Spark Streaming: Spark Streaming went alpha with Spark 0.7.0. It’s based on the idea of discretized streams or DStreams. Each DStream is represented as a sequence of RDDs, so it’s easy to use if you’re coming from low-level RDD-backed batch workloads. DStreams underwent a lot […]

Read More

Categories

August 2018
MTWTFSS
« Jul Sep »
 12345
6789101112
13141516171819
20212223242526
2728293031