Bayesian Approaches To The Cold Start Problem

John Cook explains what you can do with data-driven applications when you don’t yet have the data:

How do you operate a data-driven application before you have any data? This is known as the cold start problem.

We faced this problem all the time when I designed clinical trials at MD Anderson Cancer Center. We used Bayesian methods to design adaptive clinical trial designs, such as clinical trials for determining chemotherapy dose levels. Each patient’s treatment assignment would be informed by data from all patients treated previously.

But what about the first patient in a trial? You’ve got to treat a first patient, and treat them as well as you know how. They’re struggling with cancer, so it matters a great deal what treatment they are assigned. So you treat them according to expert opinion. What else could you do?

Read on for John’s solution.

Related Posts

Dealing With Multicollinearity With R

Chaitanya Sagar explains the concept of multicollinearity in linear regressions and how we can mitigate this issue in R: Perfect multicollinearity occurs when one independent variable is an exact linear combination of other variables. For example, you already have X and Y as independent variables and you add another variable, Z = a*X + b*Y, […]

Read More

Principal Component Analysis With Faces

Mic at The Beginner Programmer shows us how to creepy PCA diagrams with human faces: PCA looks for a new the reference system to describe your data. This new reference system is designed in such a way to maximize the variance of the data across the new axis. The first principal component accounts for as […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

August 2018
MTWTFSS
« Jul  
 12345
6789101112
13141516171819
20212223242526
2728293031