Bayesian Approaches To The Cold Start Problem

John Cook explains what you can do with data-driven applications when you don’t yet have the data:

How do you operate a data-driven application before you have any data? This is known as the cold start problem.

We faced this problem all the time when I designed clinical trials at MD Anderson Cancer Center. We used Bayesian methods to design adaptive clinical trial designs, such as clinical trials for determining chemotherapy dose levels. Each patient’s treatment assignment would be informed by data from all patients treated previously.

But what about the first patient in a trial? You’ve got to treat a first patient, and treat them as well as you know how. They’re struggling with cancer, so it matters a great deal what treatment they are assigned. So you treat them according to expert opinion. What else could you do?

Read on for John’s solution.

Related Posts

MAPE and Its Flaws

Jan Fischer takes us through Mean Absolute Percentage Error as a measure of forecast quality: Particular small actual values bias the MAPE.If any true values are very close to zero, the corresponding absolute percentage errors will be extremely high and therefore bias the informativity of the MAPE (Hyndman & Koehler 2006). The following graph clarifies this […]

Read More

Calculating AUC in R

Andrew Treadway shows how you can calculate Area Under the Curve in R: AUC is an important metric in machine learning for classification. It is often used as a measure of a model’s performance. In effect, AUC is a measure between 0 and 1 of a model’s performance that rank-orders predictions from a model. For […]

Read More

Categories

August 2018
MTWTFSS
« Jul Sep »
 12345
6789101112
13141516171819
20212223242526
2728293031