Visualizing Linear Regression Results

Bernardo Lares gives us a few ways of interpreting visually a linear regression result in R:

The most obvious plot to study for a linear regression model, you guessed it, is the regression itself. If we plot the predicted values vs the real values we can see how close they are to our reference line of 45° (intercept = 0, slope = 1). If we’d had a very sparse plot where we can see no clear tendency over that line, then we have a bad regression. On the other hand, if we have all our points over the line, I bet you gave the model your wished results!

Then, the Adjusted R2 on the plot gives us an easy parameter for us to compare models and how well did it fits our reference line. The nearer this value gets to 1, the better. Without getting too technical, if you add more and more useless variables to a model, this value will decrease; but, if you add useful variables, the Adjusted R-Squared will improve.

We also get the RMSE and MAE (Root-Mean Squared Error and Mean Absolute Error) for our regression’s results. MAE measures the average magnitude of the errors in a set of predictions, without considering their direction. On the other side we have RMSE, which is a quadratic scoring rule that also measures the average magnitude of the error. It’s the square root of the average of squared differences between prediction and actual observation. Both metrics can range from 0 to ∞ and are indifferent to the direction of errors. They are negatively-oriented scores, which means lower values are better.

I like this approach to explaining models.

Related Posts

The Lesser-Known Apply Functions In R

Andrew Treadway covers a few of the lesser-known apply functions in R: rapply Let’s start with rapply. This function has a couple of different purposes. One is to recursively apply a function to a list. We’ll get to that in a moment. The other use of rapply is to a apply a function to only those elements in […]

Read More

Bias Correction In Standard Deviation Estimates

John Mount explains how to perform bias correction and explains why it happens so rarely in practice: The bias in question is falling off at a rate of 1/n (where n is our sample size). So the bias issue loses what little gravity it ever may have ever had when working with big data. Most sources of noise will […]

Read More


July 2018
« Jun Aug »