Building Cone Plots In Plotly

The Plotly blog shows how to use Python to build 3D cone plots using Plotly:

This plot uses an explicitly defined vector field. A vector field refers to an assignment of a vector to each point in a subset of space.

In this plot, we visualize a collection of arrows that simply model the wind speed and direction at various levels of the atmosphere.

3-D weather plots can be useful to research scientists to gain a better understanding of the atmospheric profile, such as during the prediction of severe weather events like tornadoes and hurricanes.

Sometimes a 3D plot is the best answer.  When it is, this looks like a good solution.  H/T R-bloggers

Related Posts

Controlling Power BI Visual Visibility

Matt Allington shows how we can take one Power BI visual and use it to control the visibility status of another visual: I have written a few articles in the past that toy with the ideas of changing visibility and text colour based on selection.  I started to wonder if it was possible to make a visual appear […]

Read More

Sentiment Analysis with Spark on Qubole

Jonathan Day, et al, have a tutorial on using Qubole to build a sentiment analysis model: This post covers the use of Qubole, Zeppelin, PySpark, and H2O PySparkling to develop a sentiment analysis model capable of providing real-time alerts on customer product reviews. In particular, this model allows users to monitor any natural language text […]

Read More


July 2018
« Jun Aug »