Updating Hive Tables

Kevin Feasel

2018-06-07

Hadoop

Carter Shanklin gives us a few patterns for updating tables in Hive:

Historically, keeping data up-to-date in Apache Hive required custom application development that is complex, non-performant, and difficult to maintain. HDP 2.6 radically simplifies data maintenance with the introduction of SQL MERGE in Hive, complementing existing INSERT, UPDATE, and DELETE capabilities.

This article shows how to solve common data management problems, including:

  • Hive upserts, to synchronize Hive data with a source RDBMS.

  • Update the partition where data lives in Hive.

  • Selectively mask or purge data in Hive.

This isn’t the Hive of 2013; it’s much closer to a real-time warehouse.

Related Posts

It’s All ETL (Or ELT) In The End

Robin Moffatt notes that ETL (and ELT) doesn’t go away in a streaming world: In the past we used ETL techniques purely within the data-warehousing and analytic space. But, if one considers why and what ETL is doing, it is actually a lot more applicable as a broader concept. Extract: Data is available from a source system Transform: We […]

Read More

Flint: Time Series With Spark

Li Jin and Kevin Rasmussen cover the concepts of Flint, a time-series library built on Apache Spark: Time series analysis has two components: time series manipulation and time series modeling. Time series manipulation is the process of manipulating and transforming data into features for training a model. Time series manipulation is used for tasks like data […]

Read More

Categories

June 2018
MTWTFSS
« May Jul »
 123
45678910
11121314151617
18192021222324
252627282930