Updating Hive Tables

Kevin Feasel

2018-06-07

Hadoop

Carter Shanklin gives us a few patterns for updating tables in Hive:

Historically, keeping data up-to-date in Apache Hive required custom application development that is complex, non-performant, and difficult to maintain. HDP 2.6 radically simplifies data maintenance with the introduction of SQL MERGE in Hive, complementing existing INSERT, UPDATE, and DELETE capabilities.

This article shows how to solve common data management problems, including:

  • Hive upserts, to synchronize Hive data with a source RDBMS.

  • Update the partition where data lives in Hive.

  • Selectively mask or purge data in Hive.

This isn’t the Hive of 2013; it’s much closer to a real-time warehouse.

Related Posts

Working with Columns in Spark

Achilleus has a two-parter on working with columns in Spark. Part 1 covers some of the basic syntax and several functions: Also, we can have typed columns which is basically a column with an expression encoder specified for the expected input and return type. scala> val name = $"name".as[String]name: org.apache.spark.sql.TypedColumn[Any,String] = namescala> val name = […]

Read More

Creating Threadpools with ExecutorService in Kafka

Prasanth Nair shows how we can use Java’s ExecutorService to create threadpools for Kafka consumers: Apache Kafka is one of today’s most commonly used event streaming platforms. While using the Kafka platform, quite often, we run into a scenario where we have to process a large number of events/messages that are placed on a broker. […]

Read More

Categories

June 2018
MTWTFSS
« May Jul »
 123
45678910
11121314151617
18192021222324
252627282930