Event Hub Performance Tips

Vincent-Philippe Lauzon has a few tips for improving Azure Event Hub performance:

Here are some recommendations in the light of the performance and throughput results:

  • If we send many events:  always reuse connections, i.e. do not create a connection only for one event.  This is valid for both AMQP and HTTP.  A simple Connection Pool pattern makes this easy.
  • If we send many events & throughput is a concern:  use AMQP.
  • If we send few events and latency is a concern:  use HTTP / REST.
  • If events naturally comes in batch of many events:  use batch API.
  • If events do not naturally comes in batch of many events:  simply stream events.  Do not try to batch them unless network IO is constrained.
  • If a latency of 0.1 seconds is a concern:  move the call to Event Hubs away from your critical performance path.

Let’s now look at the tests we did to come up with those recommendations.

Read the whole thing.

Related Posts

Working with Columns in Spark

Achilleus has a two-parter on working with columns in Spark. Part 1 covers some of the basic syntax and several functions: Also, we can have typed columns which is basically a column with an expression encoder specified for the expected input and return type. scala> val name = $"name".as[String]name: org.apache.spark.sql.TypedColumn[Any,String] = namescala> val name = […]

Read More

Creating Threadpools with ExecutorService in Kafka

Prasanth Nair shows how we can use Java’s ExecutorService to create threadpools for Kafka consumers: Apache Kafka is one of today’s most commonly used event streaming platforms. While using the Kafka platform, quite often, we run into a scenario where we have to process a large number of events/messages that are placed on a broker. […]

Read More

Categories

June 2018
MTWTFSS
« May Jul »
 123
45678910
11121314151617
18192021222324
252627282930