Databricks MLflow

Matai Zaharia announces a new Databricks offering:

MLflow is inspired by existing ML platforms, but it is designed to be open in two senses:

  1. Open interface: MLflow is designed to work with any ML library, algorithm, deployment tool or language. It’s built around REST APIs and simple data formats (e.g., a model can be viewed as a lambda function) that can be used from a variety of tools, instead of only providing a small set of built-in functionality. This also makes it easy to add MLflow to your existing ML code so you can benefit from it immediately, and to share code using any ML library that others in your organization can run.
  2. Open source: We’re releasing MLflow as an open source project that users and library developers can extend. In addition, MLflow’s open format makes it very easy to share workflow steps and models across organizations if you wish to open source your code.

Mlflow is still currently in alpha, but we believe that it already offers a useful framework to work with ML code, and we would love to hear your feedback. In this post, we’ll introduce MLflow in detail and explain its components.

Even in alpha, it looks nice.

Related Posts

Working with Columns in Spark

Achilleus has a two-parter on working with columns in Spark. Part 1 covers some of the basic syntax and several functions: Also, we can have typed columns which is basically a column with an expression encoder specified for the expected input and return type. scala> val name = $"name".as[String]name: org.apache.spark.sql.TypedColumn[Any,String] = namescala> val name = […]

Read More

Creating Threadpools with ExecutorService in Kafka

Prasanth Nair shows how we can use Java’s ExecutorService to create threadpools for Kafka consumers: Apache Kafka is one of today’s most commonly used event streaming platforms. While using the Kafka platform, quite often, we run into a scenario where we have to process a large number of events/messages that are placed on a broker. […]

Read More


June 2018
« May Jul »