Joining Multiple Types Of Data With KSQL

Robin Moffatt has an example where he enriches streaming CSV data with information stored in MySQL:

This is a continuous query that executes in the background until explicitly terminated by the user. In effect, these are stream processing applications, and all we need to create them is SQL! Here all we’ve done is an enrichment (joining two sets of data), but we could easily add predicates to the data (simply include a WHERE clause), or even aggregations.

You can see which queries are running with the SHOW QUERIES; statement. All queries will pause if the KSQL server stops, and restart automagically when the KSQL server starts again.

The DESCRIBE EXTENDED command can be used to see information about the derived stream such as the one created above. As well as simply the columns involved, we can see information about the underlying topic, and run-time stats such as the number of messages processed and the timestamp of the most recent one.

It’s pretty easy to do; click through to see just how easy.

Related Posts

Azure Databricks And Active Directory

Tristan Robinson wraps up a two-parter on Azure Databricks security: With the addition of Databricks runtime 5.1 which was released December 2018, comes the ability to use Azure AD credential pass-through. This is a huge step forward since there is no longer a need to control user permissions through Databricks Groups / Bash and then […]

Read More

Azure Databricks Security

Tristan Robinson looks at what’s currently available in terms of security on Azure Databricks: You’ll notice that as part of this I’m retrieving the secrets/GUIDS I need for the connection from somewhere else – namely the Databricks-backed secrets store. This avoids exposing those secrets in plain text in your notebook – again this would not […]

Read More

Categories

March 2018
MTWTFSS
« Feb Apr »
 1234
567891011
12131415161718
19202122232425
262728293031