Using Kafka And Elasticsearch For IoT Data

Angelos Petheriotis talks about building an IoT structure which handles ten billion messages per day:

We splitted the pipeline into 2 main units: The aggregator job and the persisting job. The aggregator has one and only one responsibility. To read from the input kafka topic, process the messages and finally emit them to a new kafka topic. The persisting job then takes over and whenever a message is received from topic temperatures.aggregated it persists to elasticsearch.

The above approach might seem to be an overkill at first but it provides a lot of benefits (but also some drawbacks). Having two units means that each unit’s health won’t directly affect each other. If the processing job fails due OOM, the persisting job will still be healthy.

One major benefit we’ve seen using this approach is the replay capabilities this approach offers. For example, if at some point we need to persist the messages from temperatures.aggregated to Cassandra, it’s just a matter of wiring a new pipeline and start consuming the kafka topic. If we had one job for processing and persisting, we would have to reprocess every record from the thermostat.data, which comes with a great computational and time cost.

Angelos also discusses some issues he and his team had with Spark Streaming on this data set, so it’s an interesting comparison.

Related Posts

Testing Kafka Streams Applications

Yeva Byzek continues her series on testing Kafka-based streaming applications: When you create a stream processing application with Kafka’s Streams API, you create a Topologyeither using the StreamsBuilder DSL or the low-level Processor API. Normally, the topology runs with the KafkaStreams class, which connects to a Kafka cluster and begins processing when you call start(). For testing though, connecting to a running […]

Read More

Auto ML With SQL Server 2019 Big Data Clusters

Marco Inchiosa has a model scenario for using Big Data Clusters to scale out a machine learning problem: H2O provides popular open source software for data science and machine learning on big data, including Apache SparkTM integration. It provides two open source python AutoML classes: h2o.automl.H2OAutoML and pysparkling.ml.H2OAutoML. Both APIs use the same underlying algorithm implementations, […]

Read More

Categories

March 2018
MTWTFSS
« Feb Apr »
 1234
567891011
12131415161718
19202122232425
262728293031