Image Recognition Using Viola-Jones

Ellen Talbot lays out some of the basics of image recognition:

Aggregate channel features (ACF) is a variation of channel features, which extracts features directly as pixel values in extended channels without computing rectangular sums at various locations and scales.

Common channels include the colour channels, such as grey-scale and RBG, but many other channels can be encoded, depending on the difficulty of your problem (e.g. gradient magnitude and gradient histograms).

ACF has advantages, such as a richer representation, accelerated detection speed and more accurate localisation of objects in the images when used in conjunction with a boosting method.

Click through for more, including a few resources around the Viola-Jones algorithm.

Related Posts


John Mount explains the vtreat package that he and Nina Zumel have put together: When attempting predictive modeling with real-world data you quicklyrun into difficulties beyond what is typically emphasized in machine learning coursework: Missing, invalid, or out of range values. Categorical variables with large sets of possible levels. Novel categorical levels discovered during test, cross-validation, or […]

Read More

Wrapping Up A Data Science Project

I have finished my series on launching a data science project.  First, I have a post on deploying models as microservices: The other big shift is a shift away from single, large services which try to solve all of the problems.  Instead, we’ve entered the era of the microservice:  a small service dedicated to providing […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *


March 2018
« Feb