Radar Charts With ggplot2

I have wrapped up my ggplot2 series, with the last post being on radar charts:

First, we need to install ggradar and load our relevant libraries. Then, I create a quick standardization function which divides our variable by the max value of that variable in the vector. It doesn’t handle niceties like divide by 0, but we won’t have any zero values in our data frames.

The radar_data data frame starts out simple: build up some stats by continent. Then I call the mutate_each_ function to call standardize for each variable in the vars set. mutate_each_is deprecated and I should use something different like mutate_at, but this does work in the current version of ggplot2 at least.

Finally, I call the ggradar() function. This function has a large number of parameters, but the only one you absolutely need is plot.data. I decided to change the sizes because by default, it doesn’t display well at all on Windows.

It was a lot of fun putting this series together. I think the most important part of the series was learning just how easy ggplot2 is once you sit down and think about it in a systemic manner.

Related Posts


John Mount explains the vtreat package that he and Nina Zumel have put together: When attempting predictive modeling with real-world data you quicklyrun into difficulties beyond what is typically emphasized in machine learning coursework: Missing, invalid, or out of range values. Categorical variables with large sets of possible levels. Novel categorical levels discovered during test, cross-validation, or […]

Read More

R 3.4.4 Now Available

David Smith notes that R 3.4.4 is now generally available: R 3.4.4 has been released, and binaries for Windows, Mac, Linux and now available for download on CRAN. This update (codenamed “Someone to Lean On” — likely a Peanuts reference, though I couldn’t find which one with a quick search) is a minor bugfix release, and shouldn’t cause […]

Read More


February 2018
« Jan Mar »