Optimal Image Colorization With Python

Kevin Feasel

2018-02-15

Python

Sandipan Dey walks through a paper on colorization and shows some examples:

Colorization is a computer-assisted process of adding color to a monochrome image or movie. In the paper the authors presented an optimization-based colorization method that is based on a simple premise: neighboring pixels in space-time that have similar intensities should have similar colors.

This premise is formulated using a quadratic cost function  and as an optimization problem. In this approach an artist only needs to annotate the image with a few color scribbles, and the indicated colors are automatically propagated in both space and time to produce a fully colorized image or sequence.

In this article the optimization problem formulation and the way to solve it to obtain the automatically colored image will be described for the images only.

It’s an interesting approach.

Related Posts

Comparing TensorFlow Versus PyTorch

Anirudh Rao compares PyTorch to TensorFlow: For small-scale server-side deployments both frameworks are easy to wrap in e.g. a Flask web server. For mobile and embedded deployments, TensorFlow works really well. This is more than what can be said of most other deep learning frameworks including PyTorch. Deploying to Android or iOS does require a non-trivial amount of work in TensorFlow. You don’t have to rewrite the entire inference portion of your model in Java or C++. […]

Read More

What’s New With Machine Learning Services

Niels Berglund looks at SQL Server 2019’s Machine Learning Services offering for updates: So, when I read What’s new in SQL Server 2019, I came across a lot of interesting “stuff”, but one thing that stood out was Java language programmability extensions. In essence, it allows us to execute Java code in SQL Server by using a […]

Read More

Categories

February 2018
MTWTFSS
« Jan Mar »
 1234
567891011
12131415161718
19202122232425
262728