Optimal Image Colorization With Python

Kevin Feasel



Sandipan Dey walks through a paper on colorization and shows some examples:

Colorization is a computer-assisted process of adding color to a monochrome image or movie. In the paper the authors presented an optimization-based colorization method that is based on a simple premise: neighboring pixels in space-time that have similar intensities should have similar colors.

This premise is formulated using a quadratic cost function  and as an optimization problem. In this approach an artist only needs to annotate the image with a few color scribbles, and the indicated colors are automatically propagated in both space and time to produce a fully colorized image or sequence.

In this article the optimization problem formulation and the way to solve it to obtain the automatically colored image will be described for the images only.

It’s an interesting approach.

Related Posts

XGBoost With Python

Fisseha Berhane looked at Extreme Gradient Boosting with R and now covers it in Python: In both R and Python, the default base learners are trees (gbtree) but we can also specify gblinear for linear models and dart for both classification and regression problems. In this post, I will optimize only three of the parameters […]

Read More

Using Python In SQL Server 2017

Emma Stewart has a post covering setup and configuration of SQL Server 2017 Machine Learning Services and using Python within SQL Server: One of the new features of SQL Server 2017 was the ability to execute Python Scripts within SQL Server. For anyone who hasn’t heard of Python, it is the language of choice for data […]

Read More


February 2018
« Jan Mar »