Exploring The MNIST Dataset

David Robinson performs exploratory data analysis on the MNIST digit database:

The challenge is to classify a handwritten digit based on a 28-by-28 black and white image. MNIST is often credited as one of the first datasets to prove the effectiveness of neural networks.

In a series of posts, I’ll be training classifiers to recognize digits from images, while using data exploration and visualization to build our intuitions about why each method works or doesn’t. Like most of my posts I’ll be analyzing the data through tidy principles, particularly using the dplyr, tidyr and ggplot2 packages. In this first post we’ll focus on exploratory data analysis, to show how you can better understand your data before you start training classification algorithms or measuring accuracy. This will help when we’re choosing a model or transforming our features.

Read on for the analysis.

Related Posts

Methods To Improve Model Accuracy

Tristan Robinson shows how to go back to the drawing board when your model’s accuracy isn’t cutting it: One of the reoccurring principles that appears with machine learning is that of Ockham’s razor, which states that the best models are simple models that fit the data well; this is not an irrefutable principle of logic, but […]

Read More

JupyterLab Now Available

Project Jupyter announces the general availability of JupyterLab: JupyterLab is an interactive development environment for working with notebooks, code and data. Most importantly, JupyterLab has full support for Jupyter notebooks. Additionally, JupyterLab enables you to use text editors, terminals, data file viewers, and other custom components side by side with notebooks in a tabbed work area. JupyterLab […]

Read More

Categories

January 2018
MTWTFSS
« Dec Feb »
1234567
891011121314
15161718192021
22232425262728
293031