Kafka Topic Reuse

Kevin Feasel

2018-01-19

Hadoop

Martin Kleppmann walks through the trade-offs of reusing Apache Kafka topics for different event types:

The common wisdom (according to several conversations I’ve had, and according to a mailing list thread) seems to be: put all events of the same type in the same topic, and use different topics for different event types. That line of thinking is reminiscent of relational databases, where a table is a collection of records with the same type (i.e. the same set of columns), so we have an analogy between a relational table and a Kafka topic.

The Confluent Avro Schema Registry has traditionally reinforced this pattern, because it encourages you to use the same Avro schema for all messages in a topic. That schema can be evolved while maintaining compatibility (e.g. by adding optional fields), but ultimately all messages have been expected to conform to a certain record type. We’ll revisit this later in the post, after we’ve covered some more background.

For some types of streaming data, such as logged activity events, it makes sense to require that all messages in the same topic conform to the same schema. However, some people are using Kafka for more database-like purposes, such as event sourcing, or exchanging data between microservices. In this context, I believe it’s less important to define a topic as a grouping of messages with the same schema. Much more important is the fact that Kafka maintains ordering of messages within a topic-partition.

Read the whole thing.

Related Posts

What’s New In Ambari 2.7

Paul Codding and Kat Petre share some of the new features in Ambari 2.7: With this release, we wanted to make Ambari more enjoyable to use every day, simplify finding and using our API, and unblock teams managing very large clusters.  Here is a preview of a few features we’re excited to share with you:Revamped […]

Read More

Working With Images In Spark 2.4

Tomas Nykodym and Weichen Xu give us an update on working with images in the most recent version of Apache Spark: An image data source addresses many of these problems by providing the standard representation you can code against and abstracts from the details of a particular image representation.Apache Spark 2.3 provided the ImageSchema.readImages API (see Microsoft’s post […]

Read More

Categories

January 2018
MTWTFSS
« Dec Feb »
1234567
891011121314
15161718192021
22232425262728
293031