Using rquery To Speed Up Data Manipulations

Kevin Feasel

2018-01-12

R

John Mount shows off some rquery benchmarks versus dplyr and data.table:

Let’s take a look at rquery’s new “ad hoc” mode (made convenient through wrapr‘s new “wrapr_applicable” feature). This is where rquery works on in-memory data.frame data by sending it to a database, processing on the database, and then pulling the data back. We concede this is a strange way to process data, and not rquery’s primary purpose (the primary purpose being generation of safe high performance SQL for big data engines such as Spark and PostgreSQL). However, our experiments show that it is in fact a competitive technique.

We’ve summarized the results of several experiments (experiment details here) in the following graph (graphing code here). The benchmark task was hand implementing logistic regression scoring. This is an example query we have been using for some time.

There are some nice early results, so it’ll be interesting to watch as this develops.

Related Posts

The Lesser-Known Apply Functions In R

Andrew Treadway covers a few of the lesser-known apply functions in R: rapply Let’s start with rapply. This function has a couple of different purposes. One is to recursively apply a function to a list. We’ll get to that in a moment. The other use of rapply is to a apply a function to only those elements in […]

Read More

Controlling Azure Services In R With AzureR

Hong Ooi announces a new set of packages called AzureR: As background, some of you may remember the AzureSMR package, which was written a few years back as an R interface to Azure. AzureSMR was very successful and gained a significant number of users, but it was never meant to be maintainable in the long term. As […]

Read More

Categories

January 2018
MTWTFSS
« Dec Feb »
1234567
891011121314
15161718192021
22232425262728
293031