Predicting Restaurant Reservations With A Neural Net

Kevin Jacobs builds a simple neural net using Pandas and sklearn:

The first thing to notice is that our values are not normalized. The number of visitors is a number and gets larger and larger. To normalize it, we simply divide it by 100, since all numbers are below 1. The same holds for the lag. Most of the lags are lower than 30. Therefore, I will divide the lag size by 30.

Notice that there are many more approaches for normalizing the data! This is just a quick normalization on the data, but feel free to use your own normalization method. My normalization process is closely related to the MinMaxScalar normalization which can be found in sklearn (scikit-learn).

With just a few lines of Python code we can create a Multi-Layer Perceptron (MLP):

Click through for the code.

Related Posts


John Mount explains the vtreat package that he and Nina Zumel have put together: When attempting predictive modeling with real-world data you quicklyrun into difficulties beyond what is typically emphasized in machine learning coursework: Missing, invalid, or out of range values. Categorical variables with large sets of possible levels. Novel categorical levels discovered during test, cross-validation, or […]

Read More

Wrapping Up A Data Science Project

I have finished my series on launching a data science project.  First, I have a post on deploying models as microservices: The other big shift is a shift away from single, large services which try to solve all of the problems.  Instead, we’ve entered the era of the microservice:  a small service dedicated to providing […]

Read More


December 2017
« Nov Jan »