Optimizing Apache Flink

Ivan Mushketyk has a few tips for speeding up programs using Apache Flink:

One more way to optimize your Flink application is to provide some information about what your user-defined functions are doing with input data. Since Flink can’t parse and understand code, you can provide crucial information that will help to build a more efficient execution plan. There are three annotations that we can use:

  1. @ForwardedFields: Specifies what fields in an input value were left unchanged and are used in an output value.

  2. @NotForwardedFields: Specifies fields that were not preserved in the same positions in the output.

  3. @ReadFields: Specifies what fields were used to compute a result value. You should only specify fields that were used in computations and not merely copied to the output.

Click through for his four tips.

Related Posts

Streaming ETL In Practice Using KSQL

Robin Moffatt builds an example of streaming ETL using Oracle, GoldenGate, and Kafka: So in this post I’m going to show an example of what streaming ETL looks like in practice. I’m replacing batch extracts with event streams, and batch transformation with in-flight transformation of these event streams. We’ll take a stream of data from […]

Read More

Automating HDF Cluster Deployment

Ali Bajwa has a how-to guide for automating HDF 3.1 cluster deployment on AWS: The release of HDF 3.1 brings about a significant number of improvements in HDF: Apache Nifi 1.5, Kafka 1.0, plus the new NiFi registry. In addition, there were improvements to Storm, Streaming Analytics Manager, Schema Registry components. This article shows how you can […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031