Optimizing Apache Flink

Ivan Mushketyk has a few tips for speeding up programs using Apache Flink:

One more way to optimize your Flink application is to provide some information about what your user-defined functions are doing with input data. Since Flink can’t parse and understand code, you can provide crucial information that will help to build a more efficient execution plan. There are three annotations that we can use:

  1. @ForwardedFields: Specifies what fields in an input value were left unchanged and are used in an output value.

  2. @NotForwardedFields: Specifies fields that were not preserved in the same positions in the output.

  3. @ReadFields: Specifies what fields were used to compute a result value. You should only specify fields that were used in computations and not merely copied to the output.

Click through for his four tips.

Related Posts

Stream-To-Stream Joins In Spark

Ayush Tiwari shows how to join a pair of streams in Apache Spark 2.3: In Spark 2.3, it added support for stream-stream joins, i.e, we can join two streaming Datasets/DataFrames and in this blog we are going to see how beautifully spark now give support for joining the two streaming dataframes. I this example, I […]

Read More

Spark: DataFrame To RDD For Data Cleansing

Gilad Moscovitch walks us through a common data cleansing problem with Spark data frames: A problem can arise when one of the inner fields of the json,┬áhas undesired non-json values in some of the records. For instance, an inner field might contains HTTP errors, that would be interpreted as a string, rather than as a […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031