Installing The Azure ML Workbench

Leila Etaati walks us through setting up the Azure ML workbench:

In Microsoft ignite 2017, Azure ML team announce new on-premises tools for doing machine learning. this tools much more comprehensive as it provides

1- a workspace helps data wrangling

2- Data Visualization

3-Easy to deploy

4-Support Python codes

in this post and next posts, I will share my experiment with working this tools.

Click through for the step-by-step installation guide.

Related Posts

Housing Prices In Ames, Iowa: A Kaggle Competition

Kathryn Bryant and M. Aaron Owen share their Kaggle experiences.¬† First, Kathryn, et al: The lifecycle of our project was a typical one. We started with data cleaning and basic exploratory data analysis, then proceeded to feature engineering, individual model training, and ensembling/stacking. Of course, the process in practice was not quite so linear and […]

Read More

Picking A Python IDE

Kevin Jacobs reviews a few Python IDEs from the perspective of a data scientist: Ladies and gentlemens, this is one of the most perfect IDEs for editing your Python code! At least in my opinion. Jupyter notebook is a web based code editor and can quickly generate visualizations. You can mix up code and text […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031