Online Learning Algorithms

Xin Hunt describes the benefits of online learning algorithms:

A few examples of classical online learning algorithms include recursive least squares, stochastic gradient descent and multi-armed bandit algorithms like Thompson sampling. Many online algorithms (including recursive least squares and stochastic gradient descent) have offline versions. These online algorithms are usually developed after the offline version, and are designed for better scaling with large datasets and streaming data. Algorithms like Thompson sampling on the other hand, do not have offline counterparts, because the problems they solve are inherently online.

Let’s look at interactive ad recommendation systems as an example. You’ll find ads powered by these systems when you browse popular publications, weather sites and social media networks. These recommendation systems build customer preference models by tracking your shopping and browsing activities (ad clicking, wish list updates and purchases, for example). Due to the transient nature of shopping behaviors, new recommendations must reflect the most recent activities. This makes online learning a natural choice for these systems.

My favorite online learning algorithm at the moment is Online Passive-Aggressive Algorithms.  Not just because that name describes my Twitter feed.

Related Posts

Comparing TensorFlow Versus PyTorch

Anirudh Rao compares PyTorch to TensorFlow: For small-scale server-side deployments both frameworks are easy to wrap in e.g. a Flask web server. For mobile and embedded deployments, TensorFlow works really well. This is more than what can be said of most other deep learning frameworks including PyTorch. Deploying to Android or iOS does require a non-trivial amount of work in TensorFlow. You don’t have to rewrite the entire inference portion of your model in Java or C++. […]

Read More

Data Science And Data Engineering In HDP 3.0

Saumitra Buragohain, et al, show off some of the things added to the Hortonworks Data Platform for data scientists and data engineers: We leverage the power of HDP 3.0 from efficient storage (erasure coding), GPU pooling to containerized TensorFlow and Zeppelin to enable this use case. We will the save the details for a different […]

Read More

1 Comment

  • MachineLearningBear on 2017-10-19

    That’s such a great name for an algorithm! I actually went to read the paper because of the name. Thanks for sharing Kevin!

Comments are closed

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031