Online Learning Algorithms

Xin Hunt describes the benefits of online learning algorithms:

A few examples of classical online learning algorithms include recursive least squares, stochastic gradient descent and multi-armed bandit algorithms like Thompson sampling. Many online algorithms (including recursive least squares and stochastic gradient descent) have offline versions. These online algorithms are usually developed after the offline version, and are designed for better scaling with large datasets and streaming data. Algorithms like Thompson sampling on the other hand, do not have offline counterparts, because the problems they solve are inherently online.

Let’s look at interactive ad recommendation systems as an example. You’ll find ads powered by these systems when you browse popular publications, weather sites and social media networks. These recommendation systems build customer preference models by tracking your shopping and browsing activities (ad clicking, wish list updates and purchases, for example). Due to the transient nature of shopping behaviors, new recommendations must reflect the most recent activities. This makes online learning a natural choice for these systems.

My favorite online learning algorithm at the moment is Online Passive-Aggressive Algorithms.  Not just because that name describes my Twitter feed.

Related Posts

Naive Bays in R

Zulaikha Lateef takes us through the Naive Bayes algorithm and implementations in R: Naive Bayes is a Supervised Machine Learning algorithm based on the Bayes Theorem that is used to solve classification problems by following a probabilistic approach. It is based on the idea that the predictor variables in a Machine Learning model are independent of […]

Read More

Forensic Accounting: Cohort Analysis

I continue my series on forensic accounting techniques with cohort analysis: In the last post, we focused on high-level aggregates to gain a basic understanding of our data. We saw some suspicious results but couldn’t say much more than “This looks weird” due to our level of aggregation. In this post, I want to dig […]

Read More

1 Comment

  • MachineLearningBear on 2017-10-19

    That’s such a great name for an algorithm! I actually went to read the paper because of the name. Thanks for sharing Kevin!

Comments are closed

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031