How Kafka Is Tested

Kevin Feasel

2017-09-15

Hadoop

Colin McCabe walks us through the process of a change in Apache Kafka:

The Kafka community has a culture of deep and extensive code review that tries to proactively find correctness and performance issues. Code review is, of course, a pretty common practice in software engineering but it is often cursory check of style and high-level design. We’ve found a deeper investment of time in code review really pays off.

The failures in distributed systems often have to do with error conditions, often in combinations and states that can be difficult to trigger in a targeted test. There is simply no substitute for a deeply paranoid individual going through new code line-by-line and spending significant time trying to think of everything that could go wrong. This often helps to find the kind of rare problem that can be hard to trigger in a test.

Testing data processing engines is difficult, particularly distributed systems where things like network partitions and transient errors are hard to reproduce in a test environment.

Related Posts

Unit Testing Spark Streaming DStreams

Anuj Saxena shows how to create unit tests for DStreams in Spark Streaming: The method ‘ testOperation ‘ takes the output of the operation performed on the ‘inputPair’ and check whether it is equal to the ‘outputPair’ and just like this, we can test our business logic. This short snippet lets you test your business logic without […]

Read More

Kafka Topic Reuse

Martin Kleppmann walks through the trade-offs of reusing Apache Kafka topics for different event types: The common wisdom (according to several conversations I’ve had, and according to a mailing list thread) seems to be: put all events of the same type in the same topic, and use different topics for different event types. That line of […]

Read More

Categories

September 2017
MTWTFSS
« Aug Oct »
 123
45678910
11121314151617
18192021222324
252627282930