Time-Varying Models

Lingrui Gan explains how to model for parameters whose effects change over time:

We can frame conversion prediction as a binary classification problem, with outcome “1” when the visitor converts, and outcome “0” when they do not. Suppose we build a model to predict conversion using site visitor features. Some examples of relevant features are: time of day, geographical features based on a visitor’s IP address, their device type, such as “iPhone”, and features extracted from paid ads the visitor interacted with online.

A static classification model, such as logistic regression, assumes the influence of all features is stable over time, in other words, the coefficients in the model are constants. For many applications, this assumption is reasonable—we wouldn’t expect huge variations in the effect of a visitor’s device type. In other situations, we may want to allow for coefficients that change over time—as we better optimize our paid ad channel, we expect features extracted from ad interactions to be more influential in our prediction model.

Read on for more.

Related Posts

Python versus R (Again)

Alex Woodie looks at whether Python is dominating R in the data science space: There is some evidence that Python’s popularity is hurting R usage. According to the TIOBE Index, Python is currently the third most popular language in the world, behind perennial heavyweights Java and C. From August 2018 to August 2019, Python usage surged […]

Read More

Z-Tests vs T-Tests

Stephanie Glen has a picture which explains the difference between a Z-test and a T-test: The following picture shows the differences between the Z Test and T Test. Not sure which one to use? Find out more here: T-Score vs. Z-Score. Click through for the picture.

Read More

Categories

September 2017
MTWTFSS
« Aug Oct »
 123
45678910
11121314151617
18192021222324
252627282930