Introduction To Bayesian Statistics

Kennie Nybo Pontoppidan has just completed a course on Bayesian statistics:

Last month I finished a four-week course on Bayesian statistics. I have always wondered why people deemed it hard, and why I heard that the computations quickly became complicated. The course wasn’t that hard, and it gave a nice introduction to prior/posterior distributions and I many cases also how to interpret the parameters in the prior distribution as extra data points.

An interesting aspect of Bayesian statistics is that it is a mathematically rigorous model, with no magic numbers such as the 5% threshold for p-values. And I like the way it naturally caters sequential hypothesis testing with where the sample size of each iteration is not fixed in advance. Instead data are evaluated and used to update the model as they are collected.

Check out Kennie’s explanation as well as the course.  I also went through Bayes’ Theorem not too long ago, which is a good introduction to the topic if you’re unfamiliar with Bayes’s Law.

Related Posts

Unintentional Data

Eric Hollingsworth describes data science as the cost of collecting data approaches zero: Thankfully not only have modern data analysis tools made data collection cheap and easy, they have made the process of exploratory data analysis cheaper and easier as well. Yet when we use these tools to explore data and look for anomalies or […]

Read More

Measuring Semantic Relatedness

Sandipan Dey re-works a university assignment on semantic relatedness in Python: Let’s define the semantic relatedness of two WordNet nouns x and y as follows: A = set of synsets in which x appears B = set of synsets in which y appears distance(x, y) = length of shortest ancestral path of subsets A and B sca(x, y) = a shortest common ancestor of subsets A and B This is the notion of […]

Read More


September 2017
« Aug Oct »