Creating A Simple Kafka Streams Application

Bill Bejeck has built a simple Kafka Streams application for us:

This blog post will quickly get you off the ground and show you how Kafka Streams works. We’re going to make a toy application that takes incoming messages and upper-cases the text of those messages, effectively yelling at anyone who reads the message. This application is called the yelling application.

Before diving into the code, let’s take a look at the processing topology you’ll assemble for this “yelling” application. We’ll build a processing graph topology, where each node in the graph has a particular function.

His entire application is 20 lines of code but it does function as a valid Kafka Streams app and works well as a demo.

Related Posts

Page Ranking With Kafka Streams

Hunter Kelly walks through a page ranking algorithm: Once you have the adjacency matrix, you perform some straightforward matrix calculations to calculate a vector of Hub scores and a vector of Authority scores as follows: Sum across the columns and normalize, this becomes your Hub vector Multiply the Hub vector element-wise across the adjacency matrix […]

Read More

Stateful Processing In Spark Streaming

Bill Chambers and Jules Damji look at a couple of stateful scenarios within Spark Streaming: No streaming events are free of duplicate entries. Dropping duplicate entries in record-at-a-time systems is imperative—and often a cumbersome operation for a couple of reasons. First, you’ll have to process small or large batches of records at time to discard […]

Read More

Categories

September 2017
MTWTFSS
« Aug Oct »
 123
45678910
11121314151617
18192021222324
252627282930