R For Apache Impala

Kevin Feasel


Hadoop, R

Ian Cook describes implyr, an R interface for Apache Impala:

dplyr provides a grammar of data manipulation, consisting of set of verbs (including mutate()select()filter()summarise(), and arrange()) that can be used together to perform common data manipulation tasks. The implyr package helps dplyr translate this grammar into Impala-compatible SQL commands. This gives R users access to Impala’s scale and speed on large distributed datasets while using the same familiar dplyr syntax that they are accustomed to using on local data frames and other data sources. R users can also choose to directly write SQL commands and execute them on Impala using implyr.

implyr builds upon recent work from RStudio and other contributors, including major updates to the packages dplyr and DBI, and new packages dbplyr and odbc. implyr together with these packages enables data scientists and data engineers to more easily interact with Impala through self-service data science tools like Cloudera Data Science Workbench.

It looks like this project is off to a good start already.

Related Posts

Comparing Performance: HBase1 vs HBase2

Surbhi Kochhar takes us through performance improvements between HBase version 1 and HBase version 2: We are loading the YCSB dataset with 1000,000,000 records with each record 1KB in size, creating total 1TB of data. After loading, we wait for all compaction operations to finish before starting workload test. Each workload tested was run 3 […]

Read More

The Transaction Log in Delta Tables

Burak Yavuz, et al, explain how the transaction log works with Delta Tables in Apache Spark: When a user creates a Delta Lake table, that table’s transaction log is automatically created in the _delta_log subdirectory. As he or she makes changes to that table, those changes are recorded as ordered, atomic commits in the transaction log. Each commit […]

Read More


July 2017
« Jun Aug »