Data Cleanup Using Drools

Kevin Feasel

2017-07-24

Data

Rathnadevi Manivannan gives an example of using Drools to create rule-based data cleansing processes:

The oil well drilling datasets contain raw information about wells and their formation details, drill types, and production dates. The Arkansas dataset has 6,040 records and the Oklahoma dataset has 2,559 records.

The raw data contains invalid values such as null, invalid date, invalid drill type, and duplicate well and invalid well information with modified dates.

This raw data from the source is transformed to MS SQL for further filtering and normalization. To download raw data, look at the Reference section.

This is an example of applying several constraints and rules to a single data set.  Each individual rule would probably be easier to do in T-SQL, but the whole bunch becomes easier to understand with a procedural language.

Related Posts

Azure Data Share

James Serra takes us through a new product announcement: A brand new product by Microsoft called Azure Data Share was recently announced. It is in public preview. To explain the product in short, any data which resides in Azure storage can be securely shared between a data provider and a data consumer. It does this by […]

Read More

Containers and Data

Randolph West argues that you should keep data and containers separated: Where it gets interesting is that the SQL Server container is also where the database files are stored by default. I raised a point (which Grant and others have already noted in the past) that persisted storage volumes allow us to throw away a SQL Server […]

Read More

Categories

July 2017
MTWTFSS
« Jun Aug »
 12
3456789
10111213141516
17181920212223
24252627282930
31