Data Cleanup Using Drools

Kevin Feasel

2017-07-24

Data

Rathnadevi Manivannan gives an example of using Drools to create rule-based data cleansing processes:

The oil well drilling datasets contain raw information about wells and their formation details, drill types, and production dates. The Arkansas dataset has 6,040 records and the Oklahoma dataset has 2,559 records.

The raw data contains invalid values such as null, invalid date, invalid drill type, and duplicate well and invalid well information with modified dates.

This raw data from the source is transformed to MS SQL for further filtering and normalization. To download raw data, look at the Reference section.

This is an example of applying several constraints and rules to a single data set.  Each individual rule would probably be easier to do in T-SQL, but the whole bunch becomes easier to understand with a procedural language.

Related Posts

Economic Articles With Data Included

Sebastian Kranz has a Shiny app to help you find economic papers with included data: One gets some information about the size of the data files and the used code files. I also tried to find and extract a README file from each supplement. Most README files explain whether all results can be replicated with […]

Read More

Building Test Data Following A Normal Distribution In T-SQL

I (finally) have a technical blog post: In order to show you the solution, I want to build up a reasonable sized sample.  Any solution looks great when reading five records, but let’s kick that up a notch.  Or, more specifically, a million notches:  I’m going to use a CTE tally table and load 5 […]

Read More

Categories

July 2017
MTWTFSS
« Jun Aug »
 12
3456789
10111213141516
17181920212223
24252627282930
31