Analyzing Flight Data With Sparklyr

Aki Ariga continues his sparklyr series with some analysis of US flight data:

In this post, we will show you a visualization and build a predictive model of US flights with sparklyr. Flight visualization code is based on this article.

This post assumes you already have the following tables:

You should make these tables available through Apache Hive or Apache Impala (incubating) with Hue.

There’s some setup work to get this going, but getting a handle on sparklyr looks to be a good idea if you’re in the analytics space.

Related Posts

The Basics Of PCA In R

Prashant Shekhar gives us an overview of Principal Component Analysis using R: PCA changes the axis towards the direction of maximum variance and then takes projection on this new axis. The direction of maximum variance is represented by Principal Components (PC1). There are multiple principal components depending on the number of dimensions (features) in the […]

Read More

Tidy Data Is Normalized Data

I emphasize the link between a tidy dataframe and a normalized data structure: The kicker, as Wickham describes on pages 4-5, is that normalization is a critical part of tidying data.  Specifically, Wickham argues that tidy data should achieve third normal form. Now, in practice, Wickham argues, we tend to need to denormalize data because […]

Read More


February 2017
« Jan Mar »