Hadoop In The Cloud

Peter Coates talks about pros and cons to Hadoop in the cloud:

Hadoop was developed for deployment over Linux running on bare metal. Cloud deployment implies virtual machines, and for Hadoop it’s a huge difference.

As detailed in other articles (for instance, Your Cluster Is an Appliance or Understanding Hadoop Hardware Requirements), bare-metal deployments have an inherent advantage over virtual machine deployments. The biggest of these is that they can use direct attached storage, i.e., local disks.

Not every Hadoop workload is storage I/O bound, but most are, and even when Hadoop seems to be CPU bound, much of the CPU activity is often either directly in service of I/O, i.e., marshaling, unmarshaling, compression, etc., or in service of avoiding I/O, i.e., building in-memory tables for map-side joins.

Read the whole thing.

Related Posts

Alerting In Azure SQL Database

Arun Sirpal shows how to set up an alert for an Azure SQL Database: I keep things simple and like to look at certain performance based metrics but before talking about what metrics are available let’s step through an example. For this post I want to setup an alert for CPU percentage utilised that when […]

Read More

Connect(); Announcements, Including Azure Databricks

James Serra has a wrapup of Microsoft Connect(); announcements around the data platform space: Microsoft Connect(); is a developer event from Nov 15-17, where plenty of announcements are made.  Here is a summary of the data platform related announcements: Azure Databricks: In preview, this is a fast, easy, and collaborative Apache Spark based analytics platform optimized for Azure. […]

Read More

Categories

February 2017
MTWTFSS
« Jan Mar »
 12345
6789101112
13141516171819
20212223242526
2728