Storytelling With Data

Vik Paruchuri walks through exploratory data analysis using New York City schools data:

Heatmaps are good for mapping out gradients, but we’ll want something with more structure to plot out differences in SAT score across the city. School districts are a good way to visualize this information, as each district has its own administration. New York City has several dozen school districts, and each district is a small geographic area.

We can compute SAT score by school district, then plot this out on a map. In the below code, we’ll:

  • Group full by school district.

  • Compute the average of each column for each school district.

  • Convert the school_dist field to remove leading 0s, so we can match our geograpghic district data.

Also check out part 1 if you missed it.

Related Posts

Principal Component Analysis With Faces

Mic at The Beginner Programmer shows us how to creepy PCA diagrams with human faces: PCA looks for a new the reference system to describe your data. This new reference system is designed in such a way to maximize the variance of the data across the new axis. The first principal component accounts for as […]

Read More

Using Uncertainty For Model Interpretation

Yoel Zeldes and Inbar Naor explain how uncertainty can help you understand your models better: One prominent example is that of high risk applications. Let’s say you’re building a model that helps doctors decide on the preferred treatment for patients. In this case we should not only care about the accuracy of the model, but […]

Read More

Categories

July 2016
MTWTFSS
« Jun Aug »
 123
45678910
11121314151617
18192021222324
25262728293031