HBase Incremental Backup And Restore

Carter Shanklin and Vladimir Rodionov discuss incremental backup and restore coming to HBase & Phoenix:

If your tables are large it may not be possible to restore them under a different name due to space constraints. The really powerful thing about HBase backups is they are stored in WAL files that can be parsed using a simple interface that can be consumed either in Java or using the “hbase wal” utility.

Consider this scenario: A customer rep deleted some data because he thought it was unimportant. A week later the customer is upset because the data was important and you need to restore these few pieces of information. With HBase backups all you need to do is parse through the backups with a WAL reader and extract the historical values, which you can then add back in. With other databases you would have to bring another database instance online and load the backups into it. Having backups in open, well-understood formats unlocks many powerful opportunities and can bring recovery times down from days to minutes.

Read on if you manage a Hadoop cluster with HBase (or you’re likely to administer one soon).

Related Posts

Kafka Topic Reuse

Martin Kleppmann walks through the trade-offs of reusing Apache Kafka topics for different event types: The common wisdom (according to several conversations I’ve had, and according to a mailing list thread) seems to be: put all events of the same type in the same topic, and use different topics for different event types. That line of […]

Read More

Set Operations In Spark

Fisseha Berhane compares SparkSQL, DataFrames, and classic RDDs when performing certain set-based operations: In this fourth part, we will see set operators in Spark the RDD way, the DataFrame way and the SparkSQL way. Also, check out my other recent blog posts on Spark on Analyzing the Bible and the Quran using Spark and Spark […]

Read More

Categories

July 2016
MTWTFSS
« Jun Aug »
 123
45678910
11121314151617
18192021222324
25262728293031