Scaling Kafka Streams

Kevin Feasel

2016-07-15

Hadoop

Michael Noll discusses elastic scaling of Kafka Streams:

Third, how many instances can or should you run for your application?  Is there an upper limit for the number of instances and, similarly, for the parallelism of your application?  In a nutshell, the parallelism of a Kafka Streams application — similar to the parallelism of Kafka — is primarily determined by the number of partitions of the input topic(s) from which your application is reading. For example, if your application reads from a single topic that has 10 partitions, then you can run up to 10 instances of your applications (note that you can run further instances but these will be idle).  In summary, the number of topic partitions is the upper limit for the parallelism of your Kafka Streams application and thus for the number of running instances of your application.  Note: A scaling/parallelism caveat here is that the balance of the processing work between application instances depends on how well data messages are balanced between partitions.

Check it out.  Kafka Streams is a potential alternative to Spark Streaming and Storm for real-time (for some definition of “real-time”) distributed computing.

Related Posts

Last-Click Attribution With Databricks Delta

Caryl Yuhas and Denny Lee give us an example of building a last-click digital marketing attribution model with Databricks Delta: The first thing we will need to do is to establish the impression and conversion data streams.   The impression data stream provides us a real-time view of the attributes associated with those customers who were served the […]

Read More

Working With Kafka At Scale

Tony Mancill has some tips for working with large-scale Kafka clusters: Unless you have architectural needs that require you to do otherwise, use random partitioning when writing to topics. When you’re operating at scale, uneven data rates among partitions can be difficult to manage. There are three main reasons for this: First, consumers of the “hot” […]

Read More

Categories

July 2016
MTWTFSS
« Jun Aug »
 123
45678910
11121314151617
18192021222324
25262728293031