Projections And Confidence Intervals

Mirio De Rosa explains confidence intervals and sampling issues, using polls as an example:

Weighting is used to make sure samples reproduce the underlying characteristics of the population they are drawn from. For instance, in the UK 51.6% of voters are women, of these 22.5% are above 65 years of age, 23.1% have a higher education and so on. The people selected to make part of a sample may be recruited to ensure they match these proportions.

Within the context of weighting there are two major sampling procedures: Quota and stratified sampling. The relevant difference between them is the latter uses some sort of randomization device while with the former the interviewer decides whether or not to interview a person with certain characteristics. YouGov presumably applied Quota Sampling for the Brexit survey[4], and the gender, age and education weights they applied are shown in the following image.

Read the whole thing.

Related Posts

Principal Component Analysis With Faces

Mic at The Beginner Programmer shows us how to creepy PCA diagrams with human faces: PCA looks for a new the reference system to describe your data. This new reference system is designed in such a way to maximize the variance of the data across the new axis. The first principal component accounts for as […]

Read More

Using Uncertainty For Model Interpretation

Yoel Zeldes and Inbar Naor explain how uncertainty can help you understand your models better: One prominent example is that of high risk applications. Let’s say you’re building a model that helps doctors decide on the preferred treatment for patients. In this case we should not only care about the accuracy of the model, but […]

Read More


July 2016
« Jun Aug »