Projections And Confidence Intervals

Mirio De Rosa explains confidence intervals and sampling issues, using polls as an example:

Weighting is used to make sure samples reproduce the underlying characteristics of the population they are drawn from. For instance, in the UK 51.6% of voters are women, of these 22.5% are above 65 years of age, 23.1% have a higher education and so on. The people selected to make part of a sample may be recruited to ensure they match these proportions.

Within the context of weighting there are two major sampling procedures: Quota and stratified sampling. The relevant difference between them is the latter uses some sort of randomization device while with the former the interviewer decides whether or not to interview a person with certain characteristics. YouGov presumably applied Quota Sampling for the Brexit survey[4], and the gender, age and education weights they applied are shown in the following image.

Read the whole thing.

Related Posts

K Nearest Cliques

Vincent Granville explains an algorithm built around finding cliques of data points: The cliques considered here are defined by circles (in two dimensions) or spheres (in three dimensions.) In the most basic version, we have one clique for each cluster, and the clique is defined as the smallest circle containing a pre-specified proportion p of the points […]

Read More

Building An Image Recognizer With R

David Smith has a post showing how to build an image recognizer with R and Microsoft’s Cognitive Services Library: The process of training an image recognition system requires LOTS of images — millions and millions of them. The process involves feeding those images into a deep neural network, and during that process the network generates […]

Read More

Categories

July 2016
MTWTFSS
« Jun Aug »
 123
45678910
11121314151617
18192021222324
25262728293031